The adipocyte clock controls brown adipogenesis through the TGF-β and BMP signaling pathways.
نویسندگان
چکیده
The molecular clock is intimately linked to metabolic regulation, and brown adipose tissue plays a key role in energy homeostasis. However, whether the cell-intrinsic clock machinery participates in brown adipocyte development is unknown. Here, we show that Bmal1 (also known as ARNTL), the essential clock transcription activator, inhibits brown adipogenesis to adversely affect brown fat formation and thermogenic capacity. Global ablation of Bmal1 in mice increases brown fat mass and cold tolerance, and adipocyte-selective inactivation of Bmal1 recapitulates these effects and demonstrates its cell-autonomous role in brown adipocyte formation. Further loss- and gain-of-function studies in mesenchymal precursors and committed brown progenitors reveal that Bmal1 inhibits brown adipocyte lineage commitment and terminal differentiation. Mechanistically, Bmal1 inhibits brown adipogenesis through direct transcriptional control of key components of the TGF-β pathway together with reciprocally altered BMP signaling; activation of TGF-β or blockade of BMP pathways suppresses enhanced differentiation in Bmal1-deficient brown adipocytes. Collectively, our study demonstrates a novel temporal regulatory mechanism in fine-tuning brown adipocyte lineage progression to affect brown fat formation and thermogenic regulation, which could be targeted therapeutically to combat obesity.
منابع مشابه
Roles of Autocrine TGF-β Receptor and Smad Signaling in Adipocyte Differentiation
TGF-beta inhibits adipocyte differentiation, yet is expressed by adipocytes. The function of TGF-beta in adipogenesis, and its mechanism of action, is unknown. To address the role of TGF-beta signaling in adipocyte differentiation, we characterized the expression of the TGF-beta receptors, and the Smads which transmit or inhibit TGF-beta signals, during adipogenesis in 3T3-F442A cells. We found...
متن کاملEffects of fibromodulin protein expression on NFkB and TGFβ signaling pathways in liver cancer cells
Introduction: The incidence rate of liver cancer is continuously increasing. Currently, gene therapy is applied to improve various medical issues such as cancer treatment approaches. Correspondingly, fibromodulin involves in many biological and physiological processes through interaction with growth factors and signaling pathway receptors. The aim of this study was to investigate the effects of...
متن کاملButein is a novel anti-adipogenic compound.
Rhus verniciflua Stokes (RVS) has been used as a traditional herbal medicine for its various biological activities including anti-adipogenic effects. Activity-guided separation led to the identification of the anti-adipogenic functions of butein. Butein, a novel anti-adipogenic compound, robustly suppressed lipid accumulation and inhibited expression of adipogenic markers. Molecular studies sho...
متن کاملTGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation
Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canoni...
متن کاملMembrane targeting of inhibitory Smads through palmitoylation controls TGF-β/BMP signaling
TGF-β/BMP (bone morphogenetic protein) signaling pathways play conserved roles in controlling embryonic development, tissue homeostasis, and stem cell regulation. Inhibitory Smads (I-Smads) have been shown to negatively regulate TGF-β/BMP signaling by primarily targeting the type I receptors for ubiquitination and turnover. However, little is known about how I-Smads access the membrane to execu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 128 9 شماره
صفحات -
تاریخ انتشار 2015